
Article

DeepTriangle: A Deep Learning Approach to Loss
Reserving

Kevin Kuo1,∗

1 Kasa AI; kevin@kasa.ai
* Correspondence: kevin@kasa.ai

Version September 16, 2019 submitted to Risks
����������
�������

Abstract: We propose a novel approach for loss reserving based on deep neural networks. The1

approach allows for joint modeling of paid losses and claims outstanding, and incorporation of2

heterogeneous inputs. We validate the models on loss reserving data across lines of business, and3

show that they improve on the predictive accuracy of existing stochastic methods. The models require4

minimal feature engineering and expert input, and can be automated to produce forecasts more5

frequently than manual workflows.6

Keywords: loss reserving; machine learning; neural networks7

1. Introduction8

In the loss reserving exercise for property and casualty insurers, actuaries are concerned with9

forecasting future payments due to claims. Accurately estimating these payments is important from10

the perspectives of various stakeholders in the insurance industry. For the management of the insurer,11

the estimates of unpaid claims inform decisions in underwriting, pricing, and strategy. For the12

investors, loss reserves, and transactions related to them, are essential components in the balance sheet13

and income statement of the insurer. And, for the regulators, accurate loss reserves are needed to14

appropriately understand the financial soundness of the insurer.15

There can be time lags both for reporting of claims, where the insurer is not notified of a loss until16

long after it has occurred, and for final development of claims, where payments continue long after17

the loss has been reported. Also, the amounts of claims are uncertain before they have fully developed.18

These factors contribute to the difficulty of the loss reserving problem, for which extensive literature19

exists and active research is being done. We refer the reader to England and Verrall (2002) for a survey20

of the problem and existing techniques.21

Deep learning has garnered increasing interest in recent years due to successful applications22

in many fields (LeCun et al. 2015) and has recently made its way into the loss reserving literature.23

Wüthrich (2018b) augments the traditional chain ladder method with neural networks to incorporate24

claims features, Gabrielli and Wüthrich (2018) utilize neural networks to syntheisze claims data, and25

Gabrielli et al. (2018) and Gabrielli (2019) embed classical parametric loss reserving models into neural26

networks. More specifically, the development in Gabrielli et al. (2018) and Gabrielli (2019) proposes27

initializing a neural network so that, before training, it corresponds exactly to a classical model, such28

as the over-dispersed Poisson model. The training iterations then adjust the weights of the neural29

network to minimize the prediction errors, which can be interpreted as a boosting procedure.30

Submitted to Risks, pages 1 – 12 www.mdpi.com/journal/risks

http://www.mdpi.com
https://orcid.org/0000-0001-7803-7901
mailto:kevin@kasa.ai
mailto:kevin@kasa.ai
http://www.mdpi.com/2227-9091/xx/1/5?type=check_update&version=1
http://www.mdpi.com/journal/risks

Version September 16, 2019 submitted to Risks 2 of 12

Figure 1. Feedforward neural network.

In developing our framework, which we call DeepTriangle1, we also draw inspiration from31

the existing stochastic reserving literature. Works that propose utilizing data in addition to paid32

losses include Quarg and Mack (2004), which uses incurred losses, and Miranda et al. (2012), which33

incorporates claim count information. Moving beyond a single homogeneous portfolio, Avanzi34

et al. (2016) considers the dependencies among lines of business within an insurer’s portfolio, while35

Peremans et al. (2018) proposes a robust general multivariate chain ladder approach to accommodate36

outliers. There is also a category of models, referred to as state space or adaptive models, that allow37

parameters to evolve recursively in time as more data is observed (Chukhrova and Johannssen 2017).38

This iterative updating mechanism is similar in spirit to the continuous updating of neural network39

weights during model deployment.40

The approach that we develop differs from existing works in many ways, and has the following41

advantages. First, it enables joint modeling of paid losses and claims outstanding for multiple42

companies simultaneously in a single model. In fact, the architecture can also accommodate arbitrary43

additional inputs, such as claim count data and economic indicators, should they be available to the44

modeler. Second, it requires no manual input during model updates or forecasting, which means45

that predictions can be generated more frequently than traditional processes, and, in turn, allows46

management to react to changes in the portfolio sooner.47

The rest of the paper is organized as follows: Section 2 provides a brief overview of neural48

network terminology, Section 3 discusses the dataset used and introduces the proposed neural network49

architecture, Section 4 defines the performance metrics we use to benchmark our models and discuss50

the results, and Section 5 concludes.51

2. Neural Network Preliminaries52

For comprehensive treatments of neural network mechanics and implementation, we refer the53

reader to Goodfellow et al. (2016) and Chollet and Allaire (2018). A more actuarially oriented discussion54

can be found in Wuthrich and Buser (2019). In order to establish common terminology used in this55

paper, we present a brief overview in this section.56

We motivate the discussion by considering an example feedforward network with fully connected57

layers represented in Figure 1, where the goal is to predict an output y from input x. The intermediate58

values, known as hidden layers and represented by h[l]j , try to transform the input data into59

1 A portmanteau of deep learning and loss development triangle.

Version September 16, 2019 submitted to Risks 3 of 12

representations that successively become more useful at predicting the output. The nodes in the60

figure are computed, for each layer l = 1, . . . , L, as61

h[l]j = g[l](z[l]j), (1)

where62

z[l]j = w[l]T
j h[l−1] + b[l]j , (2)

for j = 1, . . . , n[l]. In these equations, a superscript [l] denotes association with the layer l, a63

subscript j denotes association with the j-th component of the layer, of which there are n[l]. The64

g[l] (l = 1, . . . , L) are called activation functions, whose values h[l] are known as activations. The65

vectors w[l]
j and scalars b[l]j are known as weights and biases, respectively, and together represent the66

parameters of the neural network, which are learned during training.67

For l = 1, we define the previous layer activations as the input, so that the calculation for the first
hidden layer becomes

h[1]j = g[1](w[1]T
j x + b[1]j). (3)

Also, for the output layer l = L, we compute the prediction

ŷ = h[L]j = g[L](w[L]T
j h[L−1] + b[L]j). (4)

We can then think of a neural network as a sequence of function compositions f = fL ◦ fL−1 ◦68

· · · ◦ f1 parameterized as f (x; W [1], b[1], . . . , W [L], b[L]). Here, it should be mentioned that the g[l]69

(l = 1, . . . , L) are chosen to be nonlinear, except for possibly in the output layer. These nonlinearities70

are key to the success of neural networks, because otherwise we would have a trivial composition of71

linear models.72

Each neural network model is specified with a specific loss function, which is used to measure73

how close the model predictions are to the actual values. During model training, the parameters74

discussed above are iteratively updated in order to minimize the loss function. Each update of the75

parameters typically involves only a subset, or mini-batch, of the training data, and one complete pass76

through the training data, which includes many updates, is known as an epoch. Training a neural77

network often requires many passes through the data.78

3. Data and Model Architecture79

In this section, we discuss the dataset used for our experiments and the proposed model80

architecture.81

3.1. Data Source82

We use the National Association of Insurance Commissioners (NAIC) Schedule P triangles83

(Meyers and Shi 2011). The dataset corresponds to claims from accident years 1988-1997, with84

development experience of 10 years for each accident year. In Schedule P data, the data is aggregated85

into accident year-development year records. The procedure for constructing the dataset is detailed in86

Meyers (2015).87

Following Meyers (2015), we restrict ourselves to a subset of the data which covers four lines of88

business (commercial auto, private personal auto, workers’ compensation, and other liability) and 5089

companies in each line of business. This is done to facilitate comparison to existing results.90

We use the following variables from the dataset in our study: line of business, company code,91

accident year, development lag, incurred loss, cumulative paid loss, and net earned premium. Claims92

outstanding, for the purpose of this study, is derived as incurred loss less cumulative paid loss. The93

company code is a categorical variable that denotes which insurer the records are associated with.94

Version September 16, 2019 submitted to Risks 4 of 12

3.2. Training/Testing Setup95

Let indices 1 ≤ i ≤ I denote accident years and 1 ≤ j ≤ J denote development years under96

consideration. Also, let {Pi,j} and {OSi,j} denote the incremental paid losses and the total claims97

outstanding, or case reserves, respectively.98

Then, at the end of calendar year I, we have access to the observed data99

{Pi,j : i = 1, . . . , I; j = 1, . . . , I − i + 1} (5)

and100

{OSi,j : i = 1, . . . , I; j = 1, . . . , I − i + 1}. (6)

Assume that we are interested in development through the Ith development year; in other words,101

we only forecast through the eldest maturity in the available data. The goal then is to obtain predictions102

for future values {P̂i,j : i = 2, . . . , I; j = i + 1, . . . , I} and {ÔSi,j : i = 2, . . . , I; j = i + 1, . . . , I}. We can103

then determine ultimate losses (UL) for each accident year i = 1, . . . , I by calculating104

ÛLi =

(
I−i+1

∑
j=1

Pi,j

)
+

(
I

∑
j=I−i+2

P̂i,j

)
. (7)

In our case, data as of year end 1997 is used for training. We then evaluate predictive performance105

on the development year 10 cumulative paid losses.106

3.3. Response and Predictor Variables107

In DeepTriangle, each training sample is associated with an accident year-development year pair,108

which we refer to thereinafter as a cell. The response for the sample associated with accident year i and109

development year j is the sequence110

(Yi,j, Yi,j+1, . . . , Yi,I−i+1), (8)

where each Yi,j = (Pi,j/NPEi, OSi,j/NPEi), and NPEi denotes the net earned premium for accident111

year i. Working with loss ratios makes training more tractable by normalizing values into a similar112

scale.113

The predictor for the sample contains two components. The first component is the observed114

history as of the end of the calendar year associated with the cell:115

(Yi,1, Yi,2, . . . , Yi,j−1). (9)

In other words, for each accident year and at each evaluation date for which we have data, we attempt116

to predict future development of the accident year’s paid losses and claims outstanding based on the117

observed history as of that date. While we are ultimately interested in Pi,j, the paid losses, we include118

claims outstanding as an auxiliary output of the model. We elaborate on the reasoning behind this119

approach in the next section.120

The second component of the predictor is the company identifier associated with the experience.121

Because we include experience from multiple companies in each training iteration, we need a way122

to differentiate the data from different companies. We discuss handling of the company identifier in123

more detail in the next section.124

3.4. Model Architecture125

As shown in Figure 2, DeepTriangle is a multi-task network (Caruana 1997) utilizing a126

sequence-to-sequence architecture (Srivastava et al. 2015; Sutskever et al. 2014) with two prediction127

Version September 16, 2019 submitted to Risks 5 of 12

Figure 2. DeepTriangle architecture. Embed denotes embedding layer, GRU denotes gated recurrent
unit, FC denotes fully connected layer.

goals: paid loss and claims outstanding. We construct one model for each line of business and each128

model is trained on data from multiple companies.129

3.4.1. Multi-Task Learning130

Since the two target quantities, paid loss and claims outstanding, are related, we expect to obtain131

better performance by jointly training than predicting each quantity independently. While Caruana132

(1997) contains detailed discourse on the specific mechanisms of multi-task learning, we provide some133

heuristics on why it may improve predictions: by utilizing the reponse data for claims outstanding, we134

are effectively increasing the training data size since we are providing more signals to the learning135

algorithm; there may be hidden features, useful for predicting paid losses, that are more easily learned136

by trying to predict claims outstanding; also, by trying to predict claims outstanding during training,137

we are imposing a bias towards neural network weight configurations which perform that task well,138

which lessens the likelihood of arriving at a model that overfits to random noise.139

3.4.2. Sequential Input Processing140

For handling the time series of paid losses and claims outstanding, we utilize gated recurrent141

units (GRU) (Chung et al. 2014), which is a type of recurrent neural network (RNN) building block142

that is appropriate for sequential data. A graphical representation of a GRU is shown in Figure 3, and143

the associated equations are as follows2:144

h̃<t> = tanh(Wh[Γrh<t−1>, x<t>] + bh) (10)

Γ<t>
r = σ(Wr[h<t−1>, x<t>] + br) (11)

Γ<t>
u = σ(Wu[h<t−1>, x<t>] + bu) (12)

h<t> = Γ<t>
u h̃<t> + (1− Γ<t>

u)h<t−1>. (13)

Here, h<t> and x<t> represent the activation and input values, respectively, at time t, and σ145

denotes the logistic sigmoid function defined as146

σ(x) =
1

1 + exp(−x)
. (14)

Wh, Wr, Wu, bh, br, and bu are the appropriately sized weight matrices and biases to be learned.147

Intuitively, the activations h<t> provide a way for the network to maintain state and “remember”148

2 Note the use of angle brackets to index position in a sequence rather than layers in a feedforward neural network as in
Section 2.

Version September 16, 2019 submitted to Risks 6 of 12

values from early values of the input sequence. The values h̃<t> can be thought of as candidates149

to replace the current state, and Γ<t>
u determines the weighting between the previous state and the150

candidate state. We remark that although the GRU (and RNN in general) may seem opaque at first,151

they contain sequential instructions for updating weights just like vanilla feedforward neural networks152

(and can in fact be interpreted as such (Goodfellow et al. 2016)).153

We first encode the sequential predictor with a GRU to obtain a summary encoding of the historical154

values. We then repeat the output I − 1 times before passing them to a decoder GRU that outputs155

its hidden state for each time step. The factor I − 1 is chosen here because for the Ith accident year,156

we need to forecast I − 1 timesteps into the future. For both the encoder and decoder GRU modules,157

we use 128 hidden units and a dropout rate of 0.2. Here, dropout refers to the regime where, during158

training, at each iteration, we randomly set the output of the hidden units to zero with a specified159

probability, in order to reduce overfitting (Srivastava et al. 2014). Intuitively, dropout accomplishes160

this by approximating an ensemble of sub-networks that can be constructed by removing some hidden161

units.162

3.4.3. Company Code Embeddings163

The company code input is first passed to an embedding layer. In this process, each company164

is mapped to a fixed length vector in Rk, where k is a hyperparameter. In our case, we choose165

k = number of levels− 1 = 49, as recommended in Guo and Berkhahn (2016). In other words, each166

company is represented by a vector in R49. This mapping mechanism is part of the neural network167

and hence is learned during the training of the network, instead of in a separate data preprocessing168

step, so the learned numerical representations are optimized for predicted the future paid losses.169

Companies that are similar in the context of our claims forecasting problem are mapped to vectors that170

are close to each other in terms of Euclidean distance. Intuitively, one can think of this representation171

as a proxy for characteristics of the companies, such as size of book and case reserving philosophy.172

Categorical embedding is a common technique in deep learning that has been successfully applied173

to recommendation systems (Cheng et al. 2016) and retail sales prediction (Guo and Berkhahn 2016).174

In the actuarial science literature, Richman and Wuthrich (2018) utilize embedding layers to capture175

characteristics of regions in mortality forecasting, while Gabrielli et al. (2018) apply them to lines of176

business factors in loss reserving.177

3.4.4. Fully Connected Layers and Outputs178

Each timestep of the decoded sequence from the GRU decoder is then concatenated with the179

company embedding output. The concatenated values are then passed to two subnetworks of fully180

connected layers, each of which shares weights across the timesteps. The two subnetworks correspond181

to the paid loss and case outstanding predictions, respectively, and each consists of a hidden layer of182

64 units with a dropout rate of 0.2, followed by an output layer of 1 unit to represent the paid loss or183

claims outstanding at a time step.184

Rectified linear unit (ReLU) (Nair and Hinton 2010), defined as185

x 7→ max(0, x), (15)

is used as the activation function (which we denote by g in Section 2) for all fully connected layers,186

including both of the output layers. We remark that this choice of output activation implies we only187

predict nonnegative cash flows, i.e. no recoveries. This assumption is reasonable for the dataset we use188

in our experiments, but may be modified to accommodate other use cases.189

3.5. Deployment Considerations190

While one may not have access to the latest experience data of competitors, the company code191

predictor can be utilized to incorporate data from companies within a group insurer. During training,192

Version September 16, 2019 submitted to Risks 7 of 12

Figure 3. Gated recurrent unit.

the relationships among the companies are inferred based on historical development behavior. This193

approach provides an automated and objective alternative to manually aggregating, or clustering, the194

data based on knowledge of the degree of homogeneity among the companies.195

If new companies join the portfolio, or if the companies and associated claims are reorganized,196

one would modify the embedding input size to accommodate the new codes, leaving the rest of the197

architecture unchanged, then refit the model. The network would then assign embedding vectors to198

the new companies.199

Since the model outputs predictions for each triangle cell, one can calculate the traditional200

age-to-age, or loss development, factors (LDF) using the model forecasts. Having a familiar output201

may enable easier integration of DeepTriangle into existing actuarial workflows.202

Insurers often have access to richer information than is available in regulatory filings, which203

underlies the experiments in this paper. For example, in addition to paid and incurred losses, one may204

include claim count triangles so that the model can also learn from, and predict, frequency information.205

4. Experiments206

We now describe the performance metrics for benchmarking the models and training details, then207

discuss the results.208

4.1. Evaluation Metrics209

We aim to produce scalar metrics to evaluate the performance of the model on each line of business.210

To this end, for each company and each line of business, we calculate the actual and predicted ultimate211

losses as of development year 10, for all accident years combined, then compute the root mean squared212

percentage error (RMSPE) and mean absolute percentage error (MAPE) over companies in each line213

of business. Percentage errors are used in order to have unit-free measures for comparing across214

companies with vastly different sizes of portfolios. Formally, if Cl is the set of companies in line of215

business l,216

MAPEl =
1
|Cl | ∑

C∈Cl

∣∣∣∣∣ ÛLC −ULC
ULC

∣∣∣∣∣ , (16)

and217

RMSPEl =

√√√√ 1
|Cl | ∑

C∈Cl

(
ÛLC −ULC)

ULC

)2

(17)

Version September 16, 2019 submitted to Risks 8 of 12

Table 1. Performance comparison of various models. DeepTriangle and AutoML are abbreviated do
DT and ML, respectively.

Line of Business Mack ODP CIT LIT ML DT

MAPE
Commercial Auto 0.060 0.217 0.052 0.052 0.068 0.043
Other Liability 0.134 0.223 0.165 0.152 0.142 0.109
Private Passenger Auto 0.038 0.039 0.038 0.040 0.036 0.025
Workers’ Compensation 0.053 0.105 0.054 0.054 0.067 0.046

RMSPE
Commercial Auto 0.080 0.822 0.076 0.074 0.096 0.057
Other Liability 0.202 0.477 0.220 0.209 0.181 0.150
Private Passenger Auto 0.061 0.063 0.057 0.060 0.059 0.039
Workers’ Compensation 0.079 0.368 0.080 0.080 0.099 0.067

where ÛLC and ULC are the predicted and actual cumulative ultimate losses, respectively, for218

company C.219

An alternative approach for evaluation could involve weighting the company results by the220

associated earned premium or using dollar amounts. However, due to the distribution of company221

sizes in the dataset, the weights would concentrate on a handful of companies. Hence, to obtain a222

more balanced evaluation, we choose to report the unweighted percentage-based measures outlined223

above. We note that the evaluation of reserving models is an ongoing area of research; and refer the224

reader to Martinek (2019) for a recent analysis.225

4.2. Implementation and Training226

The loss function is computed as the average over the forecasted time steps of the mean squared227

error of the predictions. The losses for the outputs are then averaged to obtain the network loss.228

Formally, for the sample associated with cell (i, j), we can write the per-sample loss as229

1
I − i + 1− (j− 1)

I−i+1

∑
k=j

(P̂i,k − Pi,k)
2 + (ÔSi,k −OSi,k)

2

2
. (18)

For optimization, we use the AMSGRAD (Reddi et al. 2018) variant of ADAM with a learning230

rate of 0.0005. We train each neural network for a maximum of 1000 epochs with the following early231

stopping scheme: if the loss on the validation set does not improve over a 200-epoch window, we232

terminate training and revert back to the weights on the epoch with the lowest validation loss. The233

validation set used in the early stopping criterion is defined to be the subset of the training data that234

becomes available after calendar year 1995. For each line of business, we create an ensemble of 100235

models, each trained with the same architecture but different random weight initialization. This is236

done to reduce the variance inherent in the randomness associated with neural networks.237

We implement DeepTriangle using the keras R package (Chollet et al. 2017) and TensorFlow238

(Abadi et al. 2015), which are open source software for developing neural network models. Code for239

producing the experiment results is available online.3240

4.3. Results and Discussion241

In Table 1 we tabulate the out-of-time performance of DeepTriangle against other models: the242

Mack chain-ladder model (Mack 1993), the bootstrap ODP model (England and Verrall 2002), an243

AutoML model, and a selection of Bayesian Markov chain Monte Carlo (MCMC) models from Meyers244

3 https://github.com/kasaai/deeptriangle.

https://github.com/kasaai/deeptriangle

Version September 16, 2019 submitted to Risks 9 of 12

1993 1994 1995 1996 1997

1988 1989 1990 1991 1992

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0.2

0.4

0.6

0.2

0.4

0.6Lo
ss

 R
at

io

1993 1994 1995 1996 1997

1988 1989 1990 1991 1992

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0.0

0.2

0.4

0.0

0.2

0.4

Development Lag

C
la

im
s

O
ut

st
an

di
ng

Actual

holdout

observed

Predicted

95% interval

mean

Figure 4. Development by accident year for Company 1767, commercial auto.

(2015) including the correlated incremental trend (CIT) and leveled incremental trend (LIT) models.245

For the stochastic models, we use the means of the predictive distributions as the point estimates to246

which we compare the actual outcomes. For DeepTriangle, we report the averaged predictions from247

the ensembles.248

The AutoML model is developed by automatically searching over a set of common machine249

learning techniques. In the implementation we use, it trains and cross-validates a random forest, an250

extremely-randomized forest, a random grid of gradient boosting machines, a random grid of deep251

feedforward neural networks, and stacked ensembles thereof (The H2O.ai team 2018). Details of these252

algorithms can be found in Friedman et al. (2001). Because the machine learning techniques produce253

scalar outputs, we use an iterative forecasting scheme where the prediction for a timestep is used in254

the predictor for the next timestep.255

We see that DeepTriangle improves on the performance of the popular chain ladder and ODP256

models, common machine learning models, and Bayesian stochastic models.257

In addition to aggregated results for all companies, we also investigate qualitatively the ability of258

DeepTriangle to learn development patterns of individual companies. Figures 4 and 5 show the paid259

loss development and claims outstanding development for the commercial auto line of Company 1767260

and the workers’ compensation line of Company 337, respectively. We see that the model captures the261

development patterns for Company 1767 reasonably well. However, it is unsuccessful in forecasting262

the deteriorating loss ratios for Company 337’s workers’ compensation book.263

We do not study uncertainty estimates in this paper nor interpret the forecasts as posterior264

predictive distributions; rather, they are included to reflect the stochastic nature of optimizing neural265

networks. We note that others have exploited randomness in weight initialization in producing266

predictive distributions (Lakshminarayanan et al. 2017), and further research could study the267

applicability of these techniques to reserve variability.268

Version September 16, 2019 submitted to Risks 10 of 12

1993 1994 1995 1996 1997

1988 1989 1990 1991 1992

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0.2
0.4
0.6
0.8
1.0
1.2

0.2
0.4
0.6
0.8
1.0
1.2

Lo
ss

 R
at

io

1993 1994 1995 1996 1997

1988 1989 1990 1991 1992

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

Development Lag

C
la

im
s

O
ut

st
an

di
ng

Actual

holdout

observed

Predicted

95% interval

mean

Figure 5. Development by accident year for Company 337, workers’ compensation.

5. Conclusion269

We introduce DeepTriangle, a deep learning framework for forecasting paid losses. Our models270

are able to attain performance comparable, by our metrics, to modern stochastic reserving techniques,271

without expert input. This means that one can automate model updating and report production272

at the desired frequency (although we note that, as with any automated machine learning system,273

a process involving expert review should be implemented). By utilizing neural networks, we can274

incorporate multiple heterogeneous inputs and train on multiple objectives simultaneously, and also275

allow customization of models based on available data. To summarize, this framework maintains276

accuracy while providing automatability and extensibility.277

We analyze an aggregated dataset with limited features in this paper because it is publicly278

available and well studied, but one can extend DeepTriangle to incorporate additional data, such as279

claim counts.280

Deep neural networks can be designed to extend recent efforts, such as Wüthrich (2018a), on281

applying machine learning to claims level reserving. They can also be designed to incorporate282

additional features that are not handled well by traditional machine learning algorithms, such as283

claims adjusters’ notes from free text fields and images.284

While this study focuses on prediction of point estimates, future extensions may include285

outputting distributions in order to address reserve variability.286

Acknowledgments: We thank Sigrid Keydana, Ronald Richman, the anonymous reviewers, and the volunteers287

on the Casualty Actuarial Society Committee on Reserves (CASCOR) who helped to improve the paper through288

helpful comments and discussions.289

Conflicts of Interest: The author declares no conflict of interest.290

Version September 16, 2019 submitted to Risks 11 of 12

References291

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,292

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,293

Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion294

Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,295

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,296

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-scale297

machine learning on heterogeneous systems. Software available from tensorflow.org.298

Avanzi, Benjamin, Greg Taylor, Phuong Anh Vu, and Bernard Wong. 2016. Stochastic loss reserving with299

dependence: A flexible multivariate tweedie approach. Insurance: Mathematics and Economics 71, 63–78.300

Caruana, Rich. 1997. Multitask learning. Machine learning 28(1), 41–75.301

Cheng, Heng-Tze, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah,302

Levent Koc, Jeremiah Harmsen, and et al.. 2016. Wide & deep learning for recommender systems. Proceedings303

of the 1st Workshop on Deep Learning for Recommender Systems - DLRS 2016. doi:10.1145/2988450.2988454.304

Chollet, Francois and JJ Allaire. 2018. Deep learning with R. Manning Publications.305

Chollet, François, JJ Allaire, et al.. 2017. R interface to keras. https://github.com/rstudio/keras.306

Chukhrova, Nataliya and Arne Johannssen. 2017. State space models and the kalman-filter in stochastic claims307

reserving: forecasting, filtering and smoothing. Risks 5(2), 30.308

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated309

recurrent neural networks on sequence modeling.310

England, Peter D and Richard J Verrall. 2002. Stochastic claims reserving in general insurance. British Actuarial311

Journal 8(3), 443–518.312

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2001. The elements of statistical learning, Volume 1.313

Springer series in statistics New York, NY, USA:.314

Gabrielli, Andrea. 2019. A neural network boosted double over-dispersed poisson claims reserving model.315

Available at SSRN 3365517.316

Gabrielli, Andrea, Ronald Richman, and Mario V Wuthrich. 2018. Neural network embedding of the317

over-dispersed poisson reserving model. Available at SSRN.318

Gabrielli, Andrea and Mario V Wüthrich. 2018. An individual claims history simulation machine. Risks 6(2), 29.319

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT Press Cambridge.320

Guo, Cheng and Felix Berkhahn. 2016. Entity embeddings of categorical variables. CoRR abs/1604.06737.321

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. 2017. Simple and scalable predictive322

uncertainty estimation using deep ensembles. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,323

S. Vishwanathan, and R. Garnett (Eds.), Advances in Neural Information Processing Systems 30, pp. 6402–6413.324

Curran Associates, Inc.325

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521(7553), 436.326

Mack, Thomas. 1993. Distribution-free calculation of the standard error of chain ladder reserve estimates. Astin327

bulletin 23(2), 213–225.328

Martinek, László. 2019. Analysis of stochastic reserving models by means of naic claims data. Risks 7(2), 62.329

Meyers, Glenn. 2015. Stochastic loss reserving using Bayesian MCMC models. Casualty Actuarial Society.330

Meyers, Glenn and Peng Shi. 2011. Loss reserving data pulled from NAIC schedule p. http://www.casact.org/331

research/index.cfm?fa=loss_reserves_data.332

Miranda, María Dolores Martínez, Jens Perch Nielsen, and Richard Verrall. 2012. Double chain ladder. ASTIN333

Bulletin: The Journal of the IAA 42(1), 59–76.334

Nair, Vinod and Geoffrey E Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In335

Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814.336

Peremans, Kris, Stefan Van Aelst, and Tim Verdonck. 2018. A robust general multivariate chain ladder method.337

Risks 6(4), 108.338

Quarg, Gerhard and Thomas Mack. 2004. Munich chain ladder. Blätter der DGVFM 26(4), 597–630.339

Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar. 2018. On the convergence of adam and beyond. In International340

Conference on Learning Representations.341

https://doi.org/10.1145/2988450.2988454
https://github.com/rstudio/keras
http://www.casact.org/research/index.cfm?fa=loss_reserves_data
http://www.casact.org/research/index.cfm?fa=loss_reserves_data
http://www.casact.org/research/index.cfm?fa=loss_reserves_data

Version September 16, 2019 submitted to Risks 12 of 12

Richman, Ronald and Mario V Wuthrich. 2018. A neural network extension of the lee-carter model to multiple342

populations. Available at SSRN 3270877.343

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a344

simple way to prevent neural networks from overfitting. The journal of machine learning research 15(1), 1929–1958.345

Srivastava, Nitish, Elman Mansimov, and Ruslan Salakhutdinov. 2015. Unsupervised learning of video346

representations using lstms. CoRR abs/1502.04681.347

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In348

Advances in neural information processing systems, pp. 3104–3112.349

The H2O.ai team. 2018. h2o: R Interface for H2O. R package version 3.20.0.8.350

Wüthrich, Mario V. 2018a. Machine learning in individual claims reserving. Scandinavian Actuarial Journal, 1–16.351

Wüthrich, Mario V. 2018b. Neural networks applied to chain–ladder reserving. European Actuarial Journal 8(2),352

407–436.353

Wuthrich, Mario V and Christoph Buser. 2019. Data analytics for non-life insurance pricing. Swiss Finance Institute354

Research Paper (16-68).355

c© 2019 by the authors. Submitted to Risks for possible open access publication under the terms and conditions356

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).357

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Neural Network Preliminaries
	Data and Model Architecture
	Data Source
	Training/Testing Setup
	Response and Predictor Variables
	Model Architecture
	Multi-Task Learning
	Sequential Input Processing
	Company Code Embeddings
	Fully Connected Layers and Outputs

	Deployment Considerations

	Experiments
	Evaluation Metrics
	Implementation and Training
	Results and Discussion

	Conclusion
	References

